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Abstract—The diffuse plastic instability in tubes and sheets under biaxial stress conditions is
examined by the use of perturbation methods. Very general constitutive relationships for
material properties are used. This requires the inclusion of first order changes in the strain
directions inside the patch and also treatment of the material anisotropy and strain rate sensiti-
vity in addition to strain hardening. The inclusion of variations in strain direction is found to
alter the form of the characteristic equation for stability from first order to second order but
both roots are real for all cases investigated. The value of strain hardening at which the largest
root becomes significantly positive is almost the same as that reached when changes in strain
directors are ignored. However the strain hardening at which this root becomes formally zero can
be very different. The former condition is considered to be of more practical importance than the
latter. By this test the stability increases rapidly above a strain rate sensitivity of about 0-1.

1. INTRODUCTION

Plastic instability in tubes and sheets may be defined as a condition whereby a small
localized region, which is thinner than the surrounding material of nominal size, tends to
progressively decrease in thickness relative to its surroundings. This condition is similar to
the corresponding necking instability of bars in a uniaxial stress condition. However in this
case the two-dimensional stress field must be taken into account. The presence of signifi-
cant stresses in the thickness direction also influences stability, but this situation is not
appropriate here. Likewise, bending moments and shear stresses in the sheet are assumed
small enough to have only minor effects.

Although the locally thinned region may take on a variety of geometrical shapes it is
convenient to consider specific modes and to assume that absolute stability occurs if all
modes are stable. For instance, the locally thinned region may take this form of a groove
which opens up into a cracklike defect. Alternatively it may have finite dimensions in both
directions, taking on the form of a diffuse patch. Stability against progressive opening of
grooves has been examined in a previous paper[1]. Also analysis of conditions under which
localized thinned patches can form in tubes and sheets under biaxial stress conditions has
been carried out by a number of previous workers[2-4]. The stability conditions covered
here relate to the latter mode with certain additional effects added. The added effects are (1)
the influence of strain rate sensitivity, (2) anisotropic material properties, and (3) the fact
that strain rate directors themselves vary with the aitered stress condition inside the patch.

2. MATERIAL PROPERTIES

In addition to the biaxial stress condition other major factors entering into stability are the
material constitutive properties. These can be expressed in terms of differentials as follows
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do,/o, = mdé [é, + nde,fe, D

where g, is the generalized stress, a function of the principal stresses, and ¢, is the generalized
strain in the material, being a function of the three principal strains. These will be defined
later. A dot over a variable indicates the time rate of change. Symbols m and » for present
purposes can be considered as numbers which are characteristic of the material ir: the
neighborhood of g, £,, ¢, but not necessarily outside this neighborhood. The parameter m is
usually called the strain rate sensitivity and the parameter » the strain hardening exponent.
It is often convenient to replace n/e, in equation (1) by a single parameter y, called the strain
hardening parameter. The generalized stress o, in the constitutive relation in equation (1)
is defined in a manner similar to Hill’s definition[5] as

[R(a,, -0, + RP(6, — 6,)*> + P(6, — oh)z] 1/2
o, =

RP + P @

where o, 0, and o, are the principal stresses in thickness, width and length directions and
the anisotropic parameters R and P determine the material strength in each direction. The
generalized strain rate £, is defined by the work law:

Rate of plastic work = 0,é, = 0, é, + 0,¢, + 0,¢;. 3)

Assuming orthogonality of strain rate components to the locus of constant g, in stress
space[6] it can be shown that

. 0o, .
&y = a_o-igg = Dhag (4)
. 0Oa, .
g = a—ai é, = D¢, )
. do, . .
gl:ﬁeg:Dlag (6)

which defines the directors D,, D, and D,. If g, is small enough to be neglected the expres-
sion for the directors D,, D, and D, obtained by differentiating equation (2), are as follows,

_ —(R+ Py

N Ty O

_RP(I—a)+R
=T Rpxp P ®

—RP(1 - P
D= 1(2P +02>+ ~p ©)
where

a = a0, (10)
B =ao, 1)
= [(RP + P)"?[(R + RP(x — 1)* + Pa®)'%)(s,/| o, |). (12)

It is assumed here that §,, §, and &, are the total strain rates, i.e. the additional elastic
contribution to the strain rates in equations (4,)-(6) are assumed to be negligible com-
pared with plastic strains.



Analysis of diffuse plastic stability in tubes and sheets 1447

At this stage it is convenient to define for later use the second derivatives of g, as follows:

D, = (?%0,/06 )0, =1 — D} (13)
RP+ R
D,, = (0%a,/00 o, = PP D? (14)
—RP

D, =D, = (6269/60,60,)% = D, D,. (15)

RP + P

It may be noted that the constitutive relation in equation (1), in the absence of further
information, should for generality be wriiten as a vector relationship between the principal
stresses @y, o, and g, and the principal strain rates §,, , and &,. The alternative procedure of
using a single equation via a stress function o, defined by equation (2) may be regarded as
merely a two parameter (R and P) fitting process, which is not exact but which is usually
sufficiently accurate[6].

3. ANALYSIS METHODS

Necessary prerequisites to the analysis of stability are (1) an exact definition of stability,
(2) a selection of the variable being examined for stability, and (3) definition of the boundary
conditions relating stress and strain conditions outside the patch and those inside. These will
now be considered.

Definition of stability

The criterion of Lyapunov, often described as his *first method ’[7], will be used here.
Briefly, the equilibrium points of the system are first determined and then the dynamic
equations are linearized into homogeneous equations for small departures from these
equilibrium points. The eigenvalues (latent roots) of these linearized equations are then
determined. If any of the eigenvalues are positive the system is unstable. The equations
themselves are strictly applicable only to local regions around the equilibrium point over
which the linearization is valid, and thus this definition is sometimes referred to as ‘‘ stability
in the small” rather than stability ‘““in the large” which would cover the global situation.

The variable being examined

The specific variable chosen here is the difference de, between generalized strain in the
necked region and that in the surrounding unnecked region (Fig. 1). The symbol § is always
used hereafter to denote a difference between the value of some parameter inside the
necked region and the value in the material outside this region at the same instant of time.
Variables other than dé; could be chosen. For instance, it would be feasible to choose the
difference in thickness 4. Alternatively the difference in thickness strain could be chosen,
i.e. d¢,. The three variables are related as follows:

oD
88y = 3(Dyé,) = Dyéy + 8, Y. 5—" 86 (16)

13

h 1 h 1
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SECTION A-A
(ENLARGED VIEW)

SECTION B-B
(ENLARGED VIEW)

Fig. 1. Locally thinned region of a tube subjected to internal gas pressure and end loads.

Conditions for the stability of these variables would be expected to be similar. They are not
identical, since the new variables, d¢, or 64, involve integrals of the variable d¢,, which are
formally infinite when the latent roots determining ¢, are zero. For instance, if 6¢, = K
exp(At), then 2 = 0 when [d(6é,)/dt],- , = 0. However, A < 0 when (d/d#)[6¢, + _[6:59 di], -4 =0.

Boundary conditions

The boundary conditions assumed here are illustrated in Fig. 1, which shows a tube
under internal pressure and end loads. The basic assumptions are that the principal stresses
outside the thinned region are amplified inside the region by the ratio of thicknesses in these
locations.

The possibility of localized thinning is most evident in the case of drawing processes[8, 9]
in which case the locally thinned patches would be expected to become more highly stressed
as they become thinner. In the case of flat plates localized thinning would lead to unloading
and in such cases other instability mechanisms such as the growth of groove-like defects
may be expected to dominate[l]. Internally pressurized tubes could develop instabilities in
either mode depending on dimensions and material properties. Usually in pressurized tube
tests the initial instability is diffuse (patch-type) although the final tear may be associated
with groove instability.

Adopting the boundary assumptions as stated, the following relationships apply to the
membrane stresses g; and o,

561/01 = —&AI/AI = 581 (18)
36 J0, = —5A,jA, = B¢, (19)
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where 64, is the difference in area of cross section over which the applied force in direction i
acts. The second equality in each of equations (18) and (19) arises from the assumption of
constant volume.

4. CHARACTERISTIC EQUATION FOR STABILITY

Itis shown in the Appendix that the constitutive equation (1) and the boundary conditions,
equations (18 and 19), together with the expression for generalized stress, equation (2), and
the strain rate equations (5) and (6) are sufficient to specify a set of homogeneous equations
in the variables do,, do,, da,, d¢,, d¢, and Je,. This leads to a characteristic equation in de,
which is of the form

(As* + Bs + C)36, =0 (20)
where s stands for the derivative d/dt. The coefficients 4, B and C are given by
A =mfé, 21)
B =y — (m/é)(Dyo + D) —apD? — BD? (22)
C = —yéy(Dy o + D,)B + oaf?s(D32D,, — 2D, D, Dy, + D?>Dy). (23)

It may be noted that, when the second derivatives D;; are assumed to be zero, equation
(20) becomes
2

d d
=5 (8¢) + ¢ — 4D — BD?) — (35,) = 0. @49

This equation gives the same condition for absolute stability (zero roots) as Hillier[4] for his
special case (ii) with R=1,P=1,m =0, i.e.

(vo —aBD* — D) =0 25)

which specifies the critical value of y for specified values of stress conditions defined by «
and f. The subscript has been added to y to indicate that y, is the special value of y which
leads to absolute stability if second derivatives of o, , i.e. D,;, are assumed to be zero. It may
be noted that the roots of equation (24) are linearly dependent on é,/m. The solution to
equation (24) is of the form

3¢, = (0 ;)0 expl(y — apD;> — BD>)E,/m) At] (26)

where (6¢,), is the initial value of 8¢, at time At = 0. The time constant for the growth or
diminution of the perturbation 8¢, is, not unexpectedly, proportional to the strain rate
sensitivity m and inversely proportional to the nominal strain rate &, .

Turning now to the full solution of equation (20) including terms in D;; the two roots are

i =[—B+ (B? —44C)"?})24. 2N

With 4 = m/¢, it is clear that the time constants of increase or decay in 8¢, are again linearly
related to €, and inversely to m. However, since the numerator in equation (27) is also a
function of m (though not of ;) the m-dependence for A as a whole is not strictly linear,
though this will be nearly so when m is small enough.

The positive sign in equation (27) is identified with the most positive root since both the
factors m and £, of 4 in equation (21) are positive (m is positive for realistic properties).
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The condition for absolute stability becomes
(B2 —440)V* < B (28)
or, with 4 and B positive,
C <0. (29)

If B is negative then stability is unattainable.

5. DISCUSSION OF RESULTS

Roots of the characteristic equation

Values of the normalized root A/é, are shown in Figs. 2-7 for a range of values of « = ¢,/0,
and strain hardening parameter y for typical values of R, P and strain rate sensitivity m.
Some of these figures show the smaller root in equation (27) in addition to the larger root
although the algebraically larger root determines stability. Observations are as follows:
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Fig. 2. Roots of equation for neck growth R=P =1, m= 1072,

(1). Stability is always reduced (4 is more positive) as the value of y is decreased. This
follows the direction of the classical stability criterion of Considére[10] for the uniaxial case
without m-dependence, being

_lda

. 30
a@s<1 (30)

Y
(2). As the strain rate sensitivity m increases, stability is increased in the sense that the
roots 1 become reduced.
(3). The above conclusions are true for anisotropic properties (R>1, P> 1). If R# P
the roots A are not the same when o,/0, is replaced by o,/g,.
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Fig. 3. Roots of equation for neck growth R=P=1, m= 0-01.
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Fig. 5. Roots of equation for neck growth R=P=1,m=1.
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Fig. 6. Roots of equation for neck growth R=2, P =4, m=10"%,
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Fig. 7. Roots of equation for neck growth R=4, P=4, m=10"5.

(4). In certain regions of «, absolute stability is never attained (roots are always positive).
At first sight this seems paradoxical but this only implies that inhomogeneities will always
propagate, though perhaps at negligible rates.

In order to determine conditions for propagation of inhomogeneities at acceptable rates, a
solution to equation (20) of the form

88, = K, exp{(3/é,)é, At} 31)

is considered, where A is the largest root in equation (27). An acceptably small value of
A/é, can be defined as that value which makes the exponential factor in equation (31)
acceptably small, say e = 2-718 for convenience, after some acceptable time Az. As can be
seen from the form of equation (31), if the normalized root A/é, is taken, the remaining
term in the exponent is &, At, or A¢, within the assumptions of constancy of §,. Now in
practical cases it is sufficient to consider the growth of an inhomogeneity only for some
specific maximum strain (here the thinning) of the material outside the inhomogeneity. If
this maximum strain is taken as 10 per cent then the allowable value of 1/, is determined by

2718 = exp{(1/£,)/10} (32)
or

(Afeg)ere = 10 ' (33)

where (A/£,) is thus the value of 1/¢, which makes the perturbation strain rate increase by a
factor of e =2-718 when a nominal strain increment of 10 per cent is reached in the sur-
rounding material. These values of 1/¢, are labelled as the effective stability points in Figs. 2—
7. 1t can be seen that effective stability is achieved, i.e. no ‘‘substantial” aggravation of a
neck, for values of y =y often considerably lower than those for absolute stability.
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Critical values of y and m

Values of the reciprocal strain hardening parameter y~' = ¢,/(d0,/0¢,) for absolute
stability (y,..) and for effective stability (yos) are plotted in Figs. 8-10. These three
figures relate to isotropic properties (R = P = 1), to anisotropic properties (R =2, P = 4)
and to anisotropic properties with isotropy between the width and thickness directions
(R =4, P = 4). Variations with strain rate sensitivity » are also shown in these figures. The
value yg ! for stability, assuming second derivatives D;; are zero, from equations (24) and
(25) is also shown. The same comments are applicable as those made in connection with
the plots of 1 in Figs. 2-7.

In addition it may be seen that the values of y;! are close to those of y; ! for small
values of m, say m < 0-01. This is not a coincidence as will now be demonstrated.

If the roots A of equation (20) are examined for m — 0, in the range C < 0 (see Figs. 8-10),
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Fig. 8. Absolute and effective stability criteria R =P = 1.

assuming as before that 4 from equation (21) is positive, equation (27) shows that the
largest (most positive) values of A approaches | C|/B if B is positive. As B goes through zero,
provided A is finite, 4 becomes (| C|/A4)"/%. However when B becomes negative, with m still
vanishingly small, the largest root is now | B|/A4. Thus a change in sign of B causes the root to
go from a low positive value to a high positive value and therefore the effective stability
point would be expected to be in the region close to B = 0 for small values of m.
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6. CONCLUSIONS

(1). Inclusion of first order changes in the strain director D;; inside the patch causes the
characteristic equation governing stability to become quadratic whereas exclusion of these
changes produces a first order equation.

(2). The roots of the quadratic equation are real in all cases investigated.

(3). For some values of biaxiality ratio ¢,/ the largest root is positive for all values of
strain rate sensitivity m and strain hardening parameter 7.

(4). Stability can be redefined as a condition whereby ‘* significant " neck growth does not
occur for some prescribed strain (e.g. 10 percent) in the material outside the patch. The
effective value of strain hardening parameter, v, , for this condition and for m — 0 is very
close to the value obtained without inclusion of changes in strain directors. This is shown to
be a rational conclusion.

(5). As the strain rate sensitivity s is increased beyond about 0-1 the values of v, become
very small, indicating high relative stability.

(6). Effects of anisotropy are not large over the ranges investigated.
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~

AbcTpakT — [IpHMeEHsast MeTOAbl BO3MYUIEHHS MCCICAYETCA IIACTHYECKkash HeyCTOHIMBOCTD
nubdyHaupoBaHus B TpyOax M JIMCTaX, B YCIOBHUAX ABYXOCHOTO Hampsokenus. Mcmonssytorcs
OYeHb OOLIHE KOHCTHTYTHBHbIE 3ABHCMMOCTH AJIst CBOWCTB MaTepHana. 3T1o TpedyeT BKIoYeHHs
W3MEHEHHH MEPBOTO NOPAIKa B HaNpaBieHUsX aedopMaldi BHYTPU HEGOILLIOrTO y4acTka |,
TAaKXe, pacCMOTPEHH aHH30TPOIMH MATEepHasia U YyBCTBUTEIIBHOCTH K CKOpOCTH Aedopma-
LIHH, B nobasiaeHud K neGopMallHOHHOMY yIpOuHeHU 0. HaxoauTces, 4TO BKIIIOYEHHE H3MEHE-
HUli B Hampaeiieduu gedopmMaumm W3MeHseT (OpMY XapaKTepUCTHYECKOrO YPaBHEHHUS
YCTOWYMBOCTH M3 MEPBOTrO NOPSAAKa K LPYTroMy, HO 00a KOPHM JEHCTBHTENBHBE I BCEX
HWCCIIENOBAHHBIX Cly4aeB. 3HayeHwe Ae(hOPMALHOHHOTO YMPOYHEHHUS, MPU KOTOPOM cambli
GOJNIBIION KOPEHDb 3HAYMTENBHO IOJIOKUTEIBHLIM MOUYTH TOT KE€ CaMoe, KaK TO IOCTUTHYTO,
KOTJa NpeHeOperaroTcs H3MEHEHUSIMH B BEKTOpax Hampasfienus negopmannu. Tem He meHee,
nehopMAaMOHHOE YIIPOYHEHHE, TIPH KOTOPOM ITOT KOPEHb MEPEXOauT (HOpMaibHO B HyIlb,
MOXET 6bITE COBCEM npyroe. [lepBoe ycioBue cuutaercs OblTh H0Jiee MPaKTHYECKOTO 3HAYECHU S
MO CpaBHEHHIO C OpyrdM. M3 3TOro OMbITa OKa3bIBAETCH, YTO YCTOMYHUBOCTH MOBLILLAETCA
OBICTPO BBILIE YYBCTBHTEIBHOCTH K CKOPOCTH AedGopMallvi nopsaaka npubdnuiutensHo 0,1
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APPENDIX

Derivation of the characteristic equation for stability

The perturbation variables can be identified as dq,, dg,, do,, d¢;, O, and Je,. The time
derivatives of variables, such as 3¢, , are not treated here as new variables, but as s ¢, where
the multiplier s can be considered as a linear operator, or equivalently, as Laplace transform
multiplier. For solution of this system there is first the constitutive equation (1). In addition
there are two boundary conditions, equations (18) and (19). Then there is the relation,
equation (2), between ¢,, g, and o,. This can be expressed in perturbation variables as

do

¢
da, :(7—07561 + a—g—géa,
t

= D66, + D, 5a,. (A1)

Finally the two relations, equations (5) and (6), exist between £; and ¢, and between &, and
é,. These can be expressed in perturbation form as

(Sél = 5(D1ég) = Dléég + éyéDl

. . (0D, aD,
= D, 8¢, + &, e 8o, + v 60,) (A2)

. . (.. od0 o, d0,
=D, 0é, + ¢\ D)y ——+ D), ——
o, 0, o, 0,

where Dy =0,0D/0c, and D, =0,0D,/05,, as given by equations (13) and (15), and
similarly
08, = D, 0é, + &, (D,, ——+D,—— (A3)
o, 0, s O,

where D,, = 6,0D,/00, = D, and D,, = 6,0D,/00, as given by equations (14) and (15).

The six equations (1, 18, 19, Al, A2 and A3) are thus sufficient to find a solution. The
solution equation will be derived in Je,.

The variable éa, is first eliminated by combining equation (1) and (Al) into

i [D,60, + D, b0, ) =m % + v dg, (A4)
J.‘l 69
where the new variable y is used instead of nfe, . The system is now reduced to five equations
(18, 19, A2-A4) and five variables da,, d0,, Jd¢,, d¢,and Je, . The next step is to use equations
(18) and (19) to replace do, and do, by d¢, and J¢, . If this is performed in equations (A2) and
(A3) these equations become

. - . 0y g,
6gl:leﬁg+8g D”—58,+ Dlt-—égt) (AS)
O'g (2

g

s - . 0y g,
08, = D, 0é, + ¢, | D, = og; + D, - oe,)- (A6)

g9 g
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This reduces the variables to d¢;, d¢, and dg, and the equations to (A4)—(A6). It is now
necessary to solve equations (A5) and (A6) simultaneously for d¢; and de, as functions of
de, and then put each of these solutions into equation (A4). The simultaneous solution is

_ (Dl 6ég)(s - égﬂDn) + (éy Dtrﬂ)(Dl 589)
(s — & DyoP)(s — & D, B) — &, D, ap’

(s = &2 Dy )ND, 8¢,) + (D, 86,)(, Dy, 2f)
h (S - ég D”cxﬂ)(s - ég Dttﬂ) - égletzaﬁz

8¢y (AT)

0¢,

(A8)

where o = 0,/0,, # = 6,/0, and s is the time operator d/dt.

Finally the above expressions for de, and de, can be inserted into equation (A4), yielding
a second order differential equation in only one perturbation variable, 6¢,. Some simplifica-
tion occurs in the denominators of equations (A7) and (A8) owing to the identity

D, Dy, = Drlz (A9)

which can be shown by using equations (13)-(15). The final equation of motion for 8¢, is
thus of the form

(As* + Bs + )¢, = 0. (A10)
The coefficients 4, B and C are given by equations (21)-(23) in the body of the paper.



